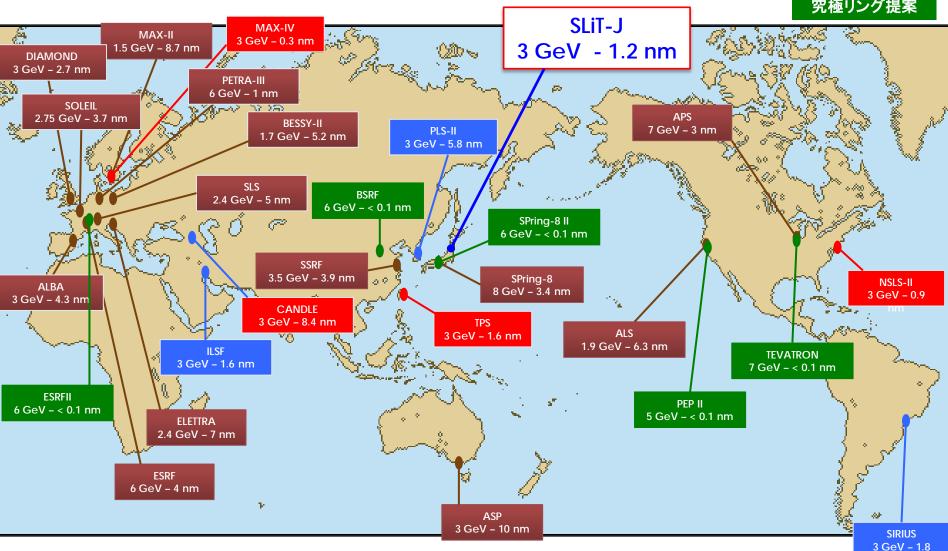
東北放射光計画

Synchrotron Light in Tohoku, Japan (SLiT-J)

- 光源加速器システムの概要 -Outlook of Light Source Accelerator Complex

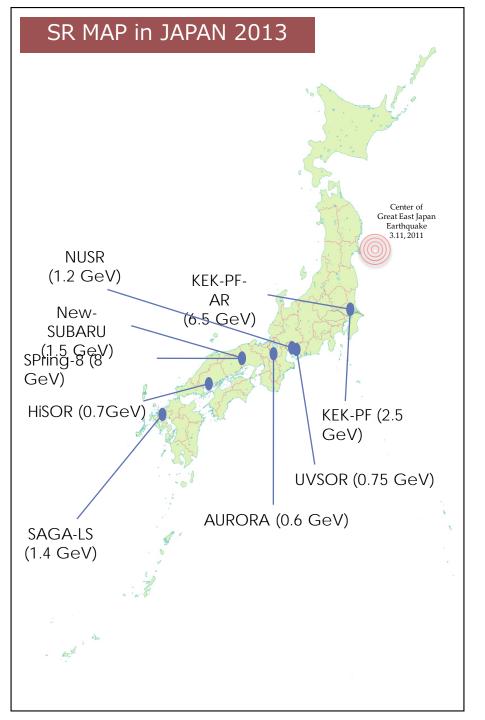
version 2013.5


濱 広幸 + 加速器・ビーム物理部門 東北大学電子光理学研究センター 東北大学大学院理学研究科物理学専攻

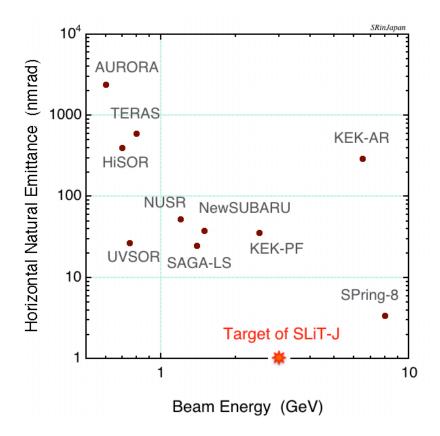
SLiT-Jデザインチーム SPring-8/高輝度光科学研究センター

運転中 建設中 計画中

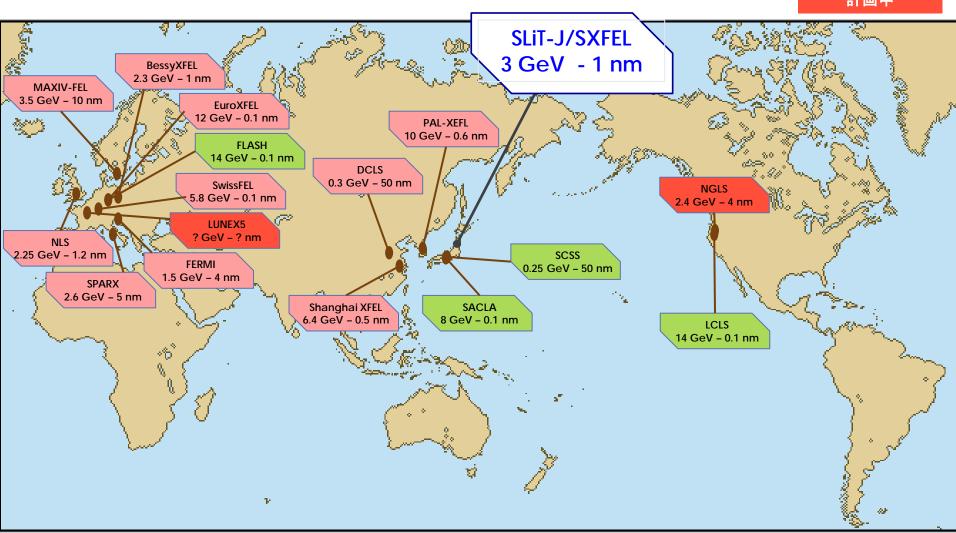
究極リング提案



• SLiT-J/STIR v. 2013.5


2

Emittance vs beam energy of 3rd generation light sources in the world



国内には多数の小規模放射光リングがあるが、第3世代リングはSPring-8のみで、各国が保有・建設している最新の3GeVクラス高輝度リングはない。また施設のすべてが関東以西にあり、東北・北海道には放射光拠点がない。

世界のシングルパス自由電子レーザー

運転中 R&D中 計画中

VUV - 軟X線FELも世界各国が注目している

東北3GeV放射光計画の立脚点と目標

【背景】

最新加速器テクノロジーを駆使した3GeVクラスの中型放射光リングは、高輝度であり汎用性に優れた利用機能を備えることができる。放射光科学においての利用研究分野が広く、利用者数も極めて多い軟X線領域付近をカバーする中核施設を、本邦に開設することは、日本の放射光科学展開に急務である。

【期待】

先端3GeVクラス高輝度リングの施設規模は国内唯一の第3世代光源である SPring-8の1/4程度であってもあり、軟X線領域での光源性能は現在のSPring-8の それと同等以上を期待する事ができる。建設費用はもちろん、徹底的なエネルギー消費管理の導入によって運転経費も低く抑えられ、高いコストパフォーマンスを達成できる可能性を持つ。

【光源加速器目標】

最適化波長領域

最大輝度

水平エミッタンス

光源リング周長

将来オプション

その他

 $0.1 \sim 10 \text{ keV}$

10²¹ phs/s/mm²/mrad²/0.1%b.w. @ 1 keV

~ 1 nmrad

~ 300 m

full-energy入射可能な線形加速器によるsoft-XFEL 真空封じアンジュレータ、Cバンドリナック等の本邦独自 の加速器技術の発展的継承

高輝度光源設計の戦略

輝度とエミッタンス

$$Brilliance = \frac{dN_{photon} / dt}{4 \pi^{2} \sigma_{x} \sigma_{x'} \sigma_{y} \sigma_{y'}} \frac{\Delta \omega}{\omega} \left(ph/s/mm^{2}/mrad^{2}/0.1\%bw \right) \propto \frac{I_{beam}}{\varepsilon_{x} \varepsilon_{y}}$$

$$\varepsilon_{x} = \frac{\gamma^{2}}{J_{x} \rho} \langle H \rangle_{dipole} \qquad H(s) = \gamma \eta^{2} + 2\alpha \eta \eta' + \beta \eta'^{2}$$

理論的最小エミッタンス

Theoretical minimum emittance

$$\varepsilon_{x}^{\min} = \frac{1}{4\sqrt{15}} \frac{C_{q} \gamma^{2} \theta^{3}}{J_{x}} (achromat), \qquad \varepsilon_{x}^{\min} = \frac{1}{12\sqrt{15}} \frac{C_{q} \gamma^{2} \theta^{3}}{J_{x}} (non-achromat)$$

$$C_{q} = 3.83 \times 10^{-13} \text{ (mrad)} \qquad \Rightarrow \text{ for 3 GeV ring}$$

$$\theta; \text{ bending angle (rad)} \qquad \qquad n_{B} = 20 \rightarrow \approx 23 \text{ nmrad}$$

$$n_{B} = 40 \rightarrow \approx 2.7 \text{ nmrad}$$

$$n_{B} = 60 \rightarrow \approx 0.82 \text{ nmrad}$$

$$n_{B}; \text{ number of identical bending magne}$$

沢山の偏向磁石からリングを構成し、1つの磁石の偏向角度を小さくすればエミッタンスは 小さくなる。

何かと話題のMAX-IV

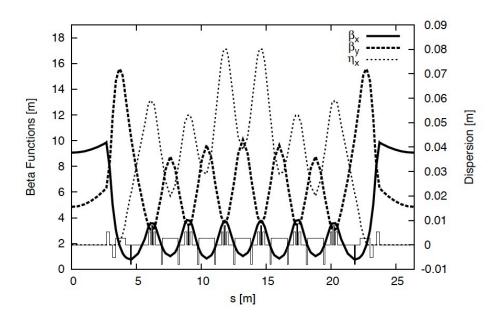
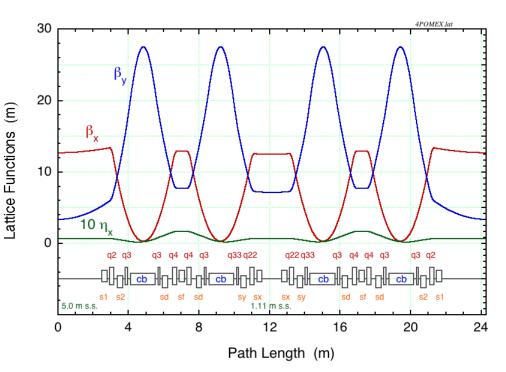


FIG. 2: Beta functions β_x , β_y and dispersion η_x for one achromat of the 3 GeV storage ring. The position of the dipoles, quadrupoles, and sextupoles are indicated at the bottom.


TABLE I: Parameters for the MAX IV 3 GeV storage ring. Permanent-magnet damping wigglers (PMDWs) are used to further reduce the storage ring emittance (see Section II C).

Energy [GeV]	3.0
Main radio frequency [MHz]	99.931
Harmonic number	176
Circulating current [mA]	500
Circumference [m]	528
Number of achromats	20
No. of long straight sections available for IDs	19
Betatron tunes (horizontal / vertical)	42.20 / 14.28
Natural chromaticities (horizontal / vertical)	-49.8 / -43.
Corrected chromaticities (horizontal/vertical)	+1.0 / +1.0
Momentum compaction factor	3.07×10^{-4}
Horizontal damping partition J_x	1.86
Horizontal emittance (bare lattice) [nm rad]	0.326
Horizontal emittance (with 4 PMDWs) [nm rad]	0.263
Radiation losses per turn (bare lattice) [keV]	360.0
Radiation losses per turn (with 4 PMDWs) [keV]	572.1
Natural energy spread	0.077%
Energy spread (with 4 PMDWs)	0.096%
Required dyn. acceptance (hor./ver.) [mm mrad]	7.1 / 1.3
Required lattice momentum acceptance	$\pm 4.5\%$

- ・7つの偏向磁石でセルを構成(両端のそれは半分の長さ)して、低エミッタンス化。
- ・マルチポールウィグラーを導入して放射減衰効果を増強し更に低エミッタンスを狙う。
- ・1セルが長いため周長が530mもありながら20セル。
- ・クロマティシティー補正の6極磁場が非常に強く、そのためにビーム動力学上の非線形性 も極めて強い。
- ・その補正に8極磁石まで動員 ☞ 極端に複雑なビーム光学

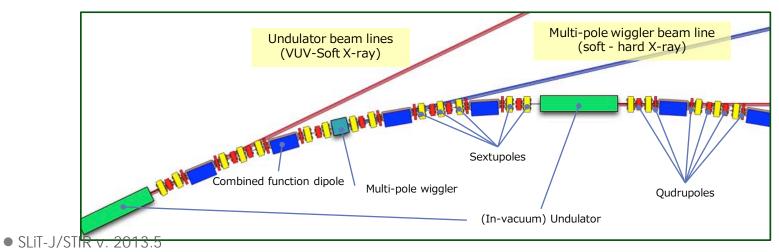
マルチベンドに対する妥協点をどのように見いだすか

SLiT-J/4ベンドハイブリッドオプティクス

セル数: 14

偏向磁石: 4/セル、0.8 T、機能複合型

4極磁石: 全て収束用、5ファミリー


6極磁石: 6ファミリー

直線部: 5.0 m - 真空封じ型を中心とした挿入

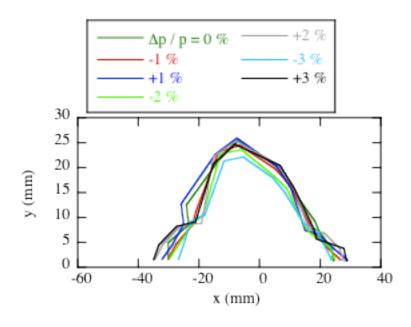
光源、VUV-SX領域

1.1 m - 高エネルギー連続光源用多極

ウィグラー

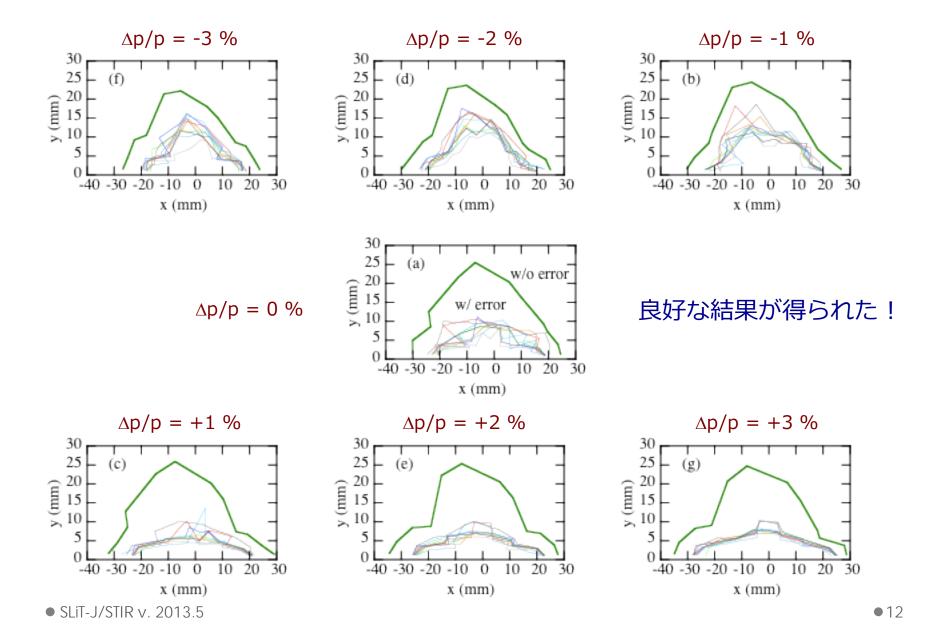
Basic Parameters of SLiT-J Storage Ring					
電子ビームエネルギー	2.998 GeV				
ラティス構造	4 -bend cell				
周長	339.92 m				
セル数	14				
直線部	5.00 m × 14				
短直線部	1.11 m × 14				
ベータトロンチューン	(25.60, 6.56)				
自然クロマティシティ	(-61.1, -40.5)				
自然水平ミッタンス	1.15 nmrad				
運動量収縮因子	0.00055				
自然エネルギー幅	0.0815 %				
直線部のラティス関数	$(b_x, b_y, h_x) = (12.7, 3.35, 0.066) m$				
減衰時間	$(t_x, t_y, t_s) = (8.5, 11.9, 7.5) \text{ ms}$				
偏向磁石による放射損失	0.57 MeV				
RF加速周波数	508 MHz				
RF加速電圧	3 MV				
ハーモニック数	576				
自然バンチ長	3.43 mm (11.1 ps)				

ビーム動力学上の非線形補正による安定性の確保

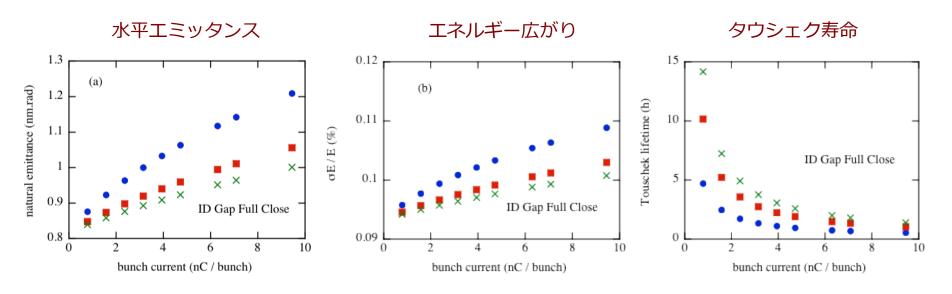

$$\left(\frac{\partial v_x}{\partial \delta}, \frac{\partial v_y}{\partial \delta}\right), \left(\frac{\partial v_x}{\partial J_x}, \frac{\partial v_y}{\partial J_y}\right), \left(\frac{\partial v_x}{\partial J_y}, \frac{\partial v_y}{\partial J_x}\right), \left(\frac{\partial^2 v_x}{\partial \delta \partial J_x}, \frac{\partial^2 v_y}{\partial \delta \partial J_y}\right), \left(\frac{\partial^2 v_x}{\partial \delta \partial J_y}, \frac{\partial^2 v_y}{\partial \delta \partial J_x}\right), \left(\frac{\partial^2 v_x}{\partial J_y \partial J_x}, \frac{\partial^2 v_y}{\partial J_x \partial J_y}\right), \dots \dots$$

消したいチューンシフトの数と同数以上のファミリーの非線形磁石を用いて最適化する

2

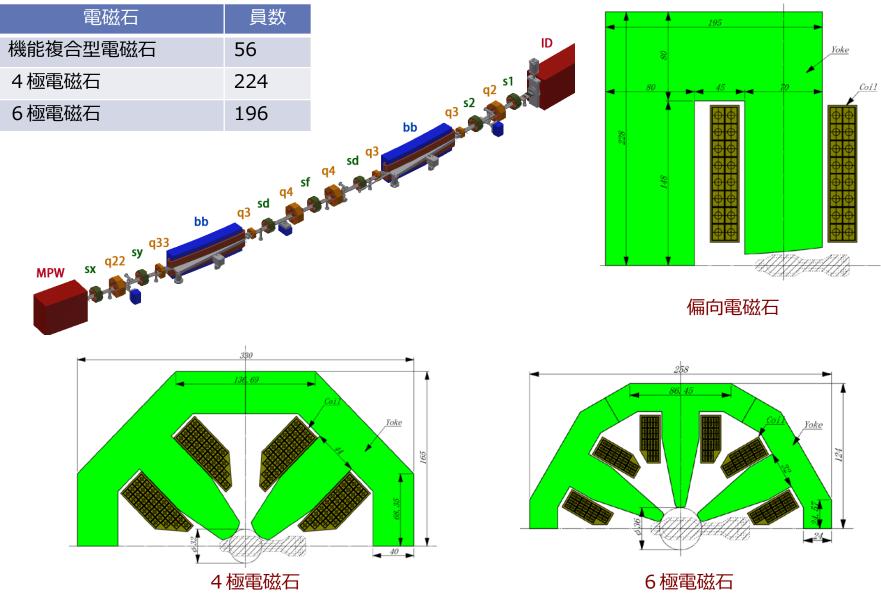

遺伝的アルゴリズムGenetic Algorithms (GA) とは

- 遺伝的アルゴリズム(Genetic Algorithms: GA)とは生命の進化 (evolution of life)のように、交叉(crossover)、突然変異(mutation)、 淘汰(selection)を繰り返しながら環境に適応することをコンピュータ 上で模擬したもの
- ・データ(解の候補)を遺伝子で表現した「個体(individual)」として扱い、「個体」の集まりである「集団(population)」の進化の過程をシミュレートすることで最適化問題を解く手法
- ・解が適合度という形で評価できるなら解の適合度に対する連続性 や可微分性がなくても答えを探すことができる → 不連続な関数 やキンクのある関数の解を見つけることができる
- ・(注) GAは厳密解を与えるものではなくて確からしい解を導くもの。
- (Note) GA will not get the exact solution, but may lead a solution close to that.

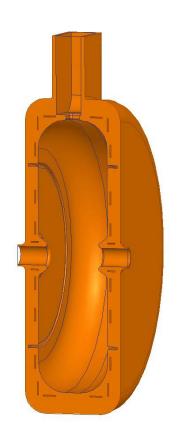

オンモーメンタム粒子及びオフモーメンタム粒子に関するダイナミックアパーチャー(直線部で観測)

六極磁石のアライメントエラー($\sigma=50~\mu m$, $2~\sigma$ cut)による力学的口径の縮小

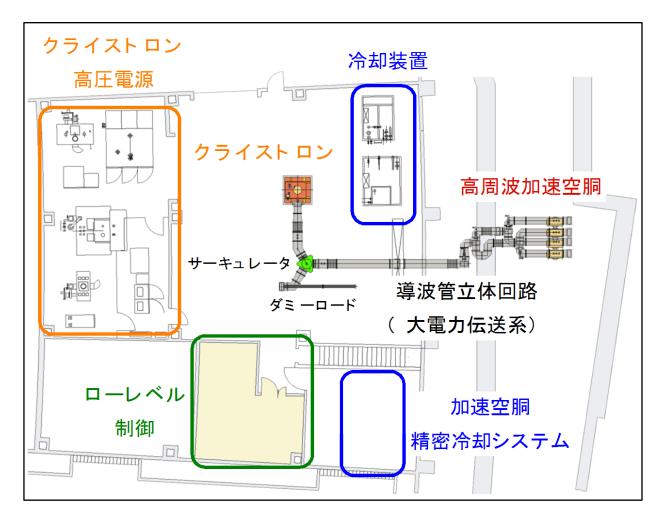
全ての挿入光源を最小ギャップにした場合の電流依存ビーム性質変化 (水平□垂直エミッタンス結合比 κ)


1 nC/bunch => 169 mA (1/3 buckets case) 400 mA => 2.36 nC/bunch

- $\kappa = 0.2 \%$
- $\kappa = 1 \%$
- \times $\kappa = 2 \%$

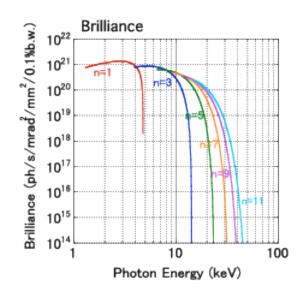

- ・挿入光源による放射減衰効果が大きい -> エミッタンス減少
- ・400mA以上の高電流運転では光源性能劣化は免れない
- ・400mA以下でもトップアップ運転は必須
- ・リングインピーダンスやCSRによる不安定性の詳細調査が必要

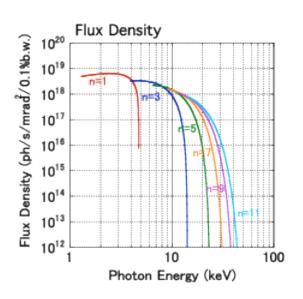
電磁石



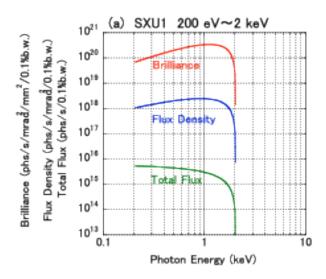
高周波加速系

加速電圧:3 MV, 最大放射パワー:480kW, 空洞ロスパワー:340 kW

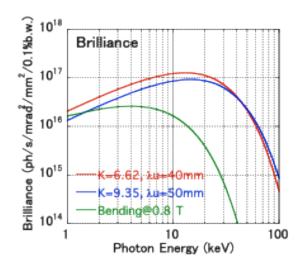

HOM抑制TM020空洞 シャントインピーダンス 6.8 MΩ 無負荷Q値 60300 R/Q 113

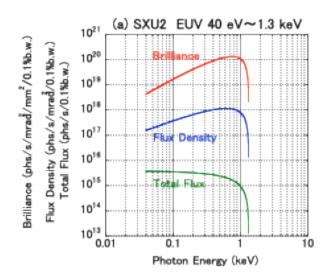


挿入光源

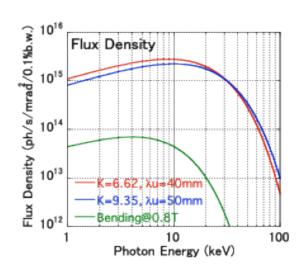

代表的な挿入光源の光子エネルギー範囲、輝度/フラックス密度、放射光パワー分布の角度広がり、全放射パワー 輝度 [photons/s/mrad²/mm²/0.1%b.w.]、フラックス密度 [photons/s/mrad²/0.1%b.w.]

	ID type	光子エネルギー [keV]	Brilliance/ Flux Density	放射パワー密度分布 最大角度広がり H/V [mrad]	最大全放射 パワー [kW]
HXU 5m ID sec.	planar	1.3 ~ 30	$10^{19} \sim 10^{21} / 10^{17} \sim 10^{19}$	±0.5 / ±0.4	18.5
SXU1 5m ID sec.	helical	0.2 ~ 2.0	~ 10 ²⁰ / ~ 10 ¹⁸	±1.0 / ±1.0	11.4
SXU2(EUV) 5m ID sec.	helical	0.04 ~ 1.3	$10^{19} \sim 10^{20} / 10^{17} \sim 10^{18}$	±1.5 / ±1.5	18.3
MPW 1m short ID sec.	planar	1~100	$10^{15} \sim 10^{17} / 10^{13} \sim 10^{15}$	±1.7 / ±0.5	6~7

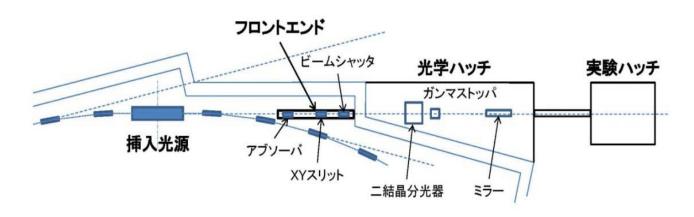




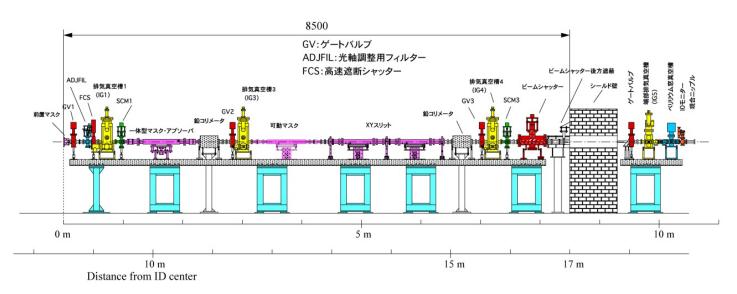
HXU(λ_u = 18 mm, N_u = 241, K_{max} = 2.3)からの放射@400mA



SXU1(λ_u = 42 mm, N_u = 104, K_{max} = 2.97)か らの放射@400mA

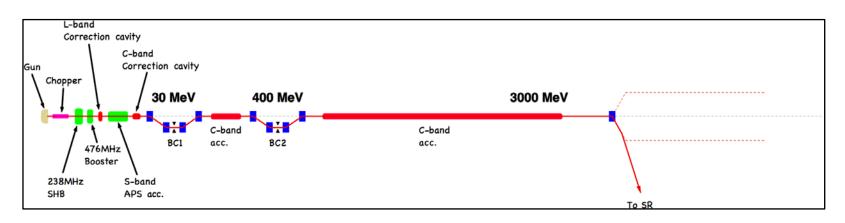


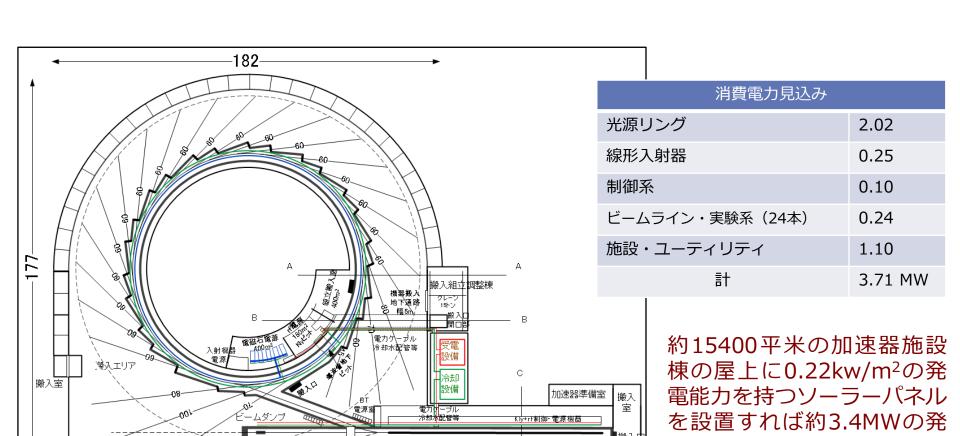
SXU2(λ_u = 64 mm, N_u = 68, K_{max} = 53.74)か らの放射@400mA



MPW1(λ_u = 40 mm, N_u = 20, K_{max} = 6.62)、MPW2(λ_u = 50 mm, N_u = 16, K_{max} = 9.35)及 びBend(0.8T)からの放射@400mA

ビームライン


ビームラインの全体構成案


フロントエンドの機器レイアウト案 (X線アンジュレータビームライン用)

Cバンド-フルエネルギー線形入射器

線形入射器の諸性能					
Beam energy	Е	3 GeV			
Energy spread	ΔΕ/Ε	< 1 %			
Energy stability	δΕ	< 0.1 %			
Beam charge	Q	~ 1 nC (max) 0.5 nC (通常積み上げ時)			
Charge stability	δQ	~ 1 %			
Normalized emittance	γε	< 5 mm.mrad (入射用) ~ 1 mm.mrad (本文参照)			
Unnormalized emittance	3	< 1.7 nm.rad			
Bunch length	τ	< 5 ps			
Repetition rate	f_{rep}	25 Hz (max)			

建屋・消費電力

建屋平面図

275-

実験研究棟

● SLIT-J/STIR v. 2013.5

С

180

電量を得ることができ、ほぼ

運転消費電力をまかなうこと

ができる。