Ground design of the 3 GeV accelerator-complex for synchrotron radiation facility in East-Japan

Light Source in East Japan

STIRC (Science, Technology, Innovation & Reconstruction Center)

Hiroyuki Hama with Beam Physics G. Electron Light Science Centre Tohoku University

Requirements and target performance

- 1 X-ray analysis for elements with relatively small atomic numbers, which will be important material to substitute rare-earth elements.
- 2 Low emittance beam for complete control of polarization for radiation from insertions, and ultra-high resolution X ray spectroscopy by nanobeam confinement.
- 3 Clear observation of material function and structure in nano-region.
- 4 Short pulse X ray for real-time analysis of chemical reaction and phase transition in matter.
- 5 Proper operation to derive maximum performance of the light source.
- 6 Low cost and energy saving light source facility.

On the other hand, rapid progress is obtained in accelerator technology and science

- 1 Well understanding of nonlinear dynamics for the low emittance beam
- 2 Ultra-short period in-vacuum undulator
- 3 Topping-up operation

.

4 C-band linac technology for XFEL (SACLA)

Advanced light source facility but high reliability and stability based on recent established accelerator science and technology

In-vacuum undulator

$$\lambda_{u} = 15 mm$$

$$B_{0} = 0.7 T \implies \varepsilon_{\text{photon}}^{1\text{st}} = 3.8 (2.6) keV$$

$$\varepsilon_{e}^{7\text{st}} = 27 (18) keV$$

 \Rightarrow X-ray region up to ~ 20 keV can be covered by 3 GeV class light source.

•Low emittance beam

- \Rightarrow extremely long straight section is not required any longer.
- \Rightarrow small aperture quad and sextupoles

 \Rightarrow compact devices and ring itself.

• Recent generic technology in Japan

 \Rightarrow Progress of information and communication technologies may bring flexible control of accelerators.

 \Rightarrow Fine processing technology can produce high-performance combined function magnets

High brilliance beam based on low-energy and lowemittance ring is directly linked with low-cost, savingenergy and earth conscious.

Target of Light Source Performance

Wavelength $0.1 \sim 20 \text{ keV}$ Brilliance

 10^{21} phs/s/mm²/mrad²/0.1%b.w.

Target of Machine Performance

Beam energy Horizontal emittance ~ 2 nmrad Circumference

~ 3 GeV < 300 m

Some additional points to keep in mind

• Laser slicing / low alpha operation toward short-pulse production

• Topping up operation

• Seeded soft X-ray FEL driven by C-band injector

Ring	Energy (GeV)	Circumferenc e (m)	Cell number	Beam current (mA)	Emittance (nmrad)	Brilliance @ 2-10 keV
DIAMOND	3	561.6	24	300	2.7	1020
ALBA	3	268.8	16	400	4.3	1020
TPS	3	518.4	24	400	1.6	1021
MAX-IV	3	528	20	500	0.33	1021
NSLS II	3	792	30	500	0.9	1021
SPring-8	8	1436	44	100	3.4	1020

Recent medium energy class light sources

It seems to be very difficult to realize 2 nmrad emittance with a circumference less than 300 m

Memorandum in designing lattice

- Proper and rational length of straight section
- •Smaller cell number and many bends
- •At least 10 straight section for insertions ($N_{cell} \ge 12$)
- •No super long straight section, simple lattice without technical difficulty
- Introduce combined function magnets to make compact
- Employ pulse quad (or sext) beam injection

Storage ring lattice design

Lattice design strategy

Theoretical minimum emittance

$$\varepsilon_{x}^{\min} = \frac{1}{4\sqrt{15}} \frac{C_{q} \gamma^{2} \theta^{3}}{J_{x}} (achromat), \qquad \varepsilon_{x}^{\min} = \frac{1}{12\sqrt{15}} \frac{C_{q} \gamma^{2} \theta^{3}}{J_{x}} (non - achromat)$$

$$C_{q} = 3.83 \times 10^{-13} \text{ (mrad)}$$

$$\theta \text{; bending angle (rad)}$$

$$J_{x} \text{; horizontal damping partition } (1 \sim 1.5)$$

$$\Rightarrow$$

$$18 - 27 \text{ nmrad } (n_{B} = 20) // 2.2 - 3.3 \text{ nmrad } (n_{B} = 40) // 0.65 - 0.98 \text{ nmrad } (n_{B} = 60)$$

$$n_{B} \text{; number of identical bending magnets}$$

• Multi-bend lattice

Lattice of many dipoles in arc such as MX-IV requires dispersion suppressor at the edge of the arc.

=> half-bend is efficient but complicate design. Longer arc section as lower emittance.

•Conventional Double-Bend Achromat (DBA) lattice

Many straight sections, but limited emittance for given ring.

Number of cells and number of bends

From theoretical limit of emittance, ~ 50 bends are at least required toward 2 nmrad at 3 GeV, practically.

•Consider the distance between bends in an arc

$C \approx 2\pi\rho + N\ell_{ss} + N(n-1)S$	for example,	N	п	<i>S</i> (m)
o; bending radius	C = 300 m	24	2	1.4
N; number of cells	$\rho = 12 \text{ m} (B = 0.83 T)$	16	3	3.0
ℓ_{ss} ; length of straight section + ~ 3 m	$N \times n = 48$	12	4	3.6
n; number of bending mag in a cell	$\ell_{ss} = 5 \text{ m}$		-	0.0
S; length between bending mags		8	6	4.0

At least 1-set of quad and 2-set of sext have to be inserted between bends for any type of lattice.

 \Rightarrow For a 300 m ring, 24-cell DBA seems impossible, maybe 16-cell TBA too.

No trade-off and compromise between number of beam lines, the low emittance should be 1st priority.

Springboard is 12-cell of quad-bend lattice. Non-achromat is being default toward less than 2 nmrad.

•7

Major machine parameters

Energy	E	2.997 GeV ($B\rho = 10$)
Circumference	C	289.2 m
Betatron tune	(v_{x}, v_{y})	(22.10, 5.27)
Natural chromaticity	$(\xi_{\mathrm{x}},\xi_{\mathrm{y}})$	(- 56.99, - 33.58)
Natural horizontal emittance	\mathcal{E}_{x}	1.862 nmrad
Momentum compaction factor	α	0.00076
Damping time	$(au_{\mathrm{x}}, au_{\mathrm{y}}, au_{\mathrm{e}})$	(6.32, 8.88, 5.56) ms
Natural energy spread	$\sigma_{\! m E}/E$	8.69×10^{-4}
Synchrotron energy loss	ΔE	0.652 MeV/turn
Min. and max. horizontal beta function	$(\beta_{\rm x}^{\rm min},\beta_{\rm x}^{\rm max})$	(0.28, 14.71) m
Min. and max. verticalbeta function	$(\beta_{y}^{\min}, \beta_{y}^{\max})$	(4.00, 26.80) m
Min. and max. dispersion function	$(\eta_{\mathrm{x}}^{\mathrm{min}},\eta_{\mathrm{x}}^{\mathrm{max}})$	(0.02, 0.21) m
Length (number) of straight section	$L_{\rm ss}$	5 m (12)
Lattice functions at straight section	$(\beta_{\rm x}, \ \beta_{\rm y}, \ \eta_{\rm x})$	(13, 4, 0.07) m

Nonlinearity correction by 6-family sextupoles

Brilliance@300mA

Still below 10²¹, but favorably comparable with recent 3 GeV class machines
 Require more brightness in lower energy region

 > optimization of undulator parameters

Injector

- •Less future progress for booster synchrotron
- Employing recent advanced linac technology to secure potential ability
 - ⇒ Seeded soft X-ray free electron laser (s-SXFEL) for high quality laser (longitudinal single mode)

 $\varepsilon_{\rm photon}$ < 3 keV (~ 0.4 nm), $P_{\rm peak}$ > 1 GW

• Independently developed C-band technology in SACLA has to be succeeded.

Expected characteristics of C-band injector

Beam energy	3 GeV
Normalized emittance	1 πmm mrad (0.17 nm rad @ 3GeV)
Maximum bunch charge	1 nC
Bunch length	2 ps
Energy spread	0.06%
Maximum repetition rate	50 Hz (1 ~ 10 Hz @ topping up)

- Bunch compressors have to be equipped in advance of s-SXFEL, but the total length is still \sim 100 m.
- Choke structure is not necessary, conventional style of the accelerating structure to reduce cost.

